Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression
نویسندگان
چکیده
Interleukin 35 (IL-35) is a novel member of the IL-12 family, consisting of an EBV-induced gene 3 (EBI3) subunit and a P35 subunit. IL-35 is an immune-suppressive cytokine mainly produced by regulatory T cells. However, the role of IL-35 in cancer metastasis and progression is not well understood. Here we demonstrate that IL-35 is overexpressed in human pancreatic ductal adenocarcinoma (PDAC) tissues, and that IL-35 overexpression is associated with poor prognosis in PDAC patients. IL-35 has critical roles in PDAC cell extravasation and metastasis by facilitating the adhesion to endothelial cells and transendothelial extravasation. Mechanistically, IL-35 promotes ICAM1 overexpression through a GP130-STAT1 signalling pathway, which facilitates endothelial adhesion and transendothelial migration via an ICAM1-fibrinogen-ICAM1 bridge. In an orthotopic xenograft model, IL-35 promotes spontaneous pancreatic cancer metastasis in an ICAM1-dependent manner. Together, our results indicate additional functions of IL-35 in promoting PDAC metastasis through mediating ICAM1 expression.
منابع مشابه
BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages
The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased in recent years, therefore the identification of novel targets for treatment is extremely important. Interactions between cancer and stromal cells are critically involved in tumour formation and development of metastasis. Here we report that PDAC cells secrete BAG3, which binds and activates macrophages, indu...
متن کاملPSC-derived Galectin-1 inducing epithelial-mesenchymal transition of pancreatic ductal adenocarcinoma cells by activating the NF-κB pathway
Galectin-1 has previously been shown to be strongly expressed in activated pancreatic stellate cells (PSCs) and promote the development and metastasis of pancreatic ductal adenocarcinoma (PDAC). However, the molecular mechanisms by which Galectin-1 promotes the malignant behavior of pancreatic cancer cells remain unclear. In this study, we examined the effects of Galectin-1 knockdown or overexp...
متن کاملLipocalin2 Promotes Invasion, Tumorigenicity and Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma
Lipocalin 2 (LCN2) is a small secreted protein and its elevated expression has been observed in pancreatic as well as other cancer types. LCN2 has been reported to promote resistance to drug-induced apoptosis, enhance invasion through its physical association with matrix metalloproteinase-9, and promote in vivo tumor growth. LCN2 was found to be commonly expressed in patient PDAC samples and it...
متن کاملEukaryotic Translation Initiation Factor 3a (eIF3a) Promotes Cell Proliferation and Motility in Pancreatic Cancer
Identifying a target molecule that is crucially involved in pancreatic tumor growth and metastasis is necessary in developing an effective treatment. The study aimed to investigate the role of the eukaryotic translation initiation factor 3a (eIF3a) in the cell proliferation and motility in pancreatic cancer. Our data showed that the expression of eIF3a was upregulated in pancreatic ductal adeno...
متن کاملOverexpression of B7-H1 correlates with malignant cell proliferation in pancreatic cancer.
B7-H1, a member of the B7 family of proteins, is hypothesised to play an important role in the immune escape of tumours through its binding to the PD-1 receptor on activated T and B cells. By inducing T lymphocyte apoptosis, tumour cells can suppress an effective antitumour immune response. Although the immunosuppressive effect of B7-H1 has been studied in many tumours, its other biological fun...
متن کامل